Holes in Graphs

نویسندگان

  • Yuejian Peng
  • Vojtech Rödl
  • Andrzej Rucinski
چکیده

The celebrated Regularity Lemma of Szemerédi asserts that every sufficiently large graph G can be partitioned in such a way that most pairs of the partition sets span -regular subgraphs. In applications, however, the graph G has to be dense and the partition sets are typically very small. If only one -regular pair is needed, a much bigger one can be found, even if the original graph is sparse. In this paper we show that every graph with density d contains a large, relatively dense -regular pair. We mainly focus on a related concept of an ( , σ)-dense pair, for which our bound is, up to a constant, best possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some conjectures on perfect graphs

The complement of a graph G is denoted by G. χ(G) denotes the chromatic number and ω(G) the clique number of G. The cycles of odd length at least five are called odd holes and the complements of odd holes are called odd anti-holes. A graph G is called perfect if, for each induced subgraph G of G, χ(G) = ω(G). Classical examples of perfect graphs consist of bipartite graphs, chordal graphs and c...

متن کامل

Crossing Numbers on the Disk with Multiple Holes

In this paper we look at the crossing number, pair crossing number, and odd crossing number of graphs on a disk with multiple holes. We provide an upper bound ⌊ (n−1)2 4 ⌋ for the odd crossing number of graphs on the annulus with n edges. For graphs on a disk with multiple holes, we develop polynomial time algorithms to find the number of crossings between two edges, given their homotopy classe...

متن کامل

MAXIMUM CLIQUE and MINIMUM CLIQUE PARTITION in Visibility Graphs

In an alternative approach to “characterizing” the graph class of visibility graphs of simple polygons, we study the problem of finding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that n...

متن کامل

Non-Hamiltonian Holes in Grid Graphs

In this paper we extend general grid graphs to the grid graphs consist of polygons tiling on a plane, named polygonal grid graphs. With a cycle basis satisfied polygons tiling, we study the cyclic structure of Hamilton graphs. A Hamilton cycle can be expressed as a symmetric difference of a subset of cycles in the basis. From the combinatorial relations of vertices in the subset of cycles in th...

متن کامل

Triangle-free strongly circular-perfect graphs

Zhu [15] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G) ≤ ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [4]; in particular, perfect graphs are closed under complementation [7]. In...

متن کامل

Graphs having many holes but with small competition numbers

The competition number k(G) of a graph G is the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph. A chordless cycle of length at least 4 of a graph is called a hole of the graph. The number of holes of a graph is closely related to its competition number as the competition number of a chordal graph which does not contain a hole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2002